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Abstract

The “t-model” for dimensional reduction is applied to the estima-
tion of the rate of decay of solutions of the Burgers equation and of
the Euler equations in two and three space dimensions. The model was
first derived in a statistical mechanics context, but here we analyze it
purely as a numerical tool and prove its convergence. In the Burgers
case the model captures the rate of decay exactly, as was already pre-
viously shown. For the Euler equations in two space dimensions, the
model preserves energy as it should. In three dimensions, we find a
power law decay in time and observe a temporal intermittency.

1 Introduction

Despite the rapid increase in available computational power there are still
many systems which cannot be studied numerically without prior simplifica-
tion. In earlier work [1, 2], we and others have derived methods for reducing
the number of variables one has to solve for in complex problems, based
on statistical projections. A special case, a long memory model called the
”t-model”, was thought to be particularly applicable to problems in fluid
dynamics [3, 4], where temporal correlations decay slowly. An earlier appli-
cation [5] of the t-model to the estimation of the rate of decay of solutions
of the Burgers equation yielded remarkably accurate results.
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In the present paper we use the t-model equations to reduce the number
of variables in spectral methods and prove its convergence as the number
of Fourier components increases . We then apply it to the estimation of
the rate of decay of solutions of Euler’s equations in two and three space
dimensions. We do not address the claim implicit in earlier work, that the
t-model equations may yield acceptable results even when the number of
variables remains finite. The results we obtain are, however, surprisingly
accurate, and a full analysis may well have to go through some version of
the arguments on the basis of which the t-model was originally derived. Note
that unlike previous damping methods for allowing spectral calculations to
proceed to significant time spans (e.g. [6, 7, 8, 9, 10, 11, 12], the t-model
equations contain no adjustable parameters and is guaranteed to remain
stable.

The paper is organized as follows. In Section 2.1 we present the deriva-
tion of the t-model. In Section 2.2 we prove some results about its behavior
for systems that conserve the L2 norm of the solution and construct numer-
ical methods that respect these properties. In Section 3, the t-model for the
3D Euler equations is constructed. In Section 4, we apply the t-model to
the 1D inviscid Burgers equation and the 2D and 3D Euler equations and
discuss how the numerical results compare to the known theoretical results.

2 The t-model

We begin with a system of ordinary differential equations

d

dt
v(t) = f (v(t), w(t)) , v(0) = x (1)

d

dt
w(t) = g (v(t), w(t)) , w(0) = y (2)

Here x, v ∈ R
n, y,w ∈ R

m and f : R
n × R

m → R
n, g : R

n × R
m → R

m, and
t is time. We think of v as the slow (resolved) variables and of w as the fast
(unresolved) variables.

We assume that the system (1)–(2) conserves energy and that the energy
is given by

E =
1

2
(‖v‖2 + ‖w‖2). (3)

Here ‖v‖ and ‖w‖ are the norms corresponding to the inner products
(v, v′) =

∑n
i=1 viv

′
i and (w,w′) =

∑m
i=1 wiw

′
i. It follows from the conservation
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of energy that

(v, f(v, 0)) = 0 (4)

‖f(v, 0)‖2 + (v,Dfv(v, 0) · f(v, 0)) = 0 (5)

‖g(v, 0)‖2 + (v,Dfw(v, 0) · g(v, 0)) = 0 (6)

for all v ∈ R
n. Here the n × m matrix Dwf(v, 0) consists of the derivatives

of f(v,w), evaluated at w = 0.
To establish (4) we differentiate both sides of (3) with respect to t and

use (1),(2). This gives

d

dt
E = (v, f(v,w)) + (w, g(v,w)) = 0. (7)

Since v,w can be given any initial values we see that (7) is an identity in
v,w. In particular it holds when w = 0 so (v, f(v, 0)) = 0 for all v.

To prove (5) we use a variational argument. Let a ∈ R
n. Since (4)

remains true when we replace v by v + ǫa it follows from Taylor’s formula
that

0 = (v + ǫa, f(v + ǫa, 0))

= (v, f(v, 0)) + ǫ [(a, f(v, 0)) + (v,Dvf(v, 0) · a)] + O(ǫ2).

But (v, f(v, 0)) = 0 so dividing by ǫ, letting ǫ → 0 and setting a = f(v, 0)
yields (5).

The proof of (6) is similar. Let w = ǫ b = ǫg(v, 0). Using Taylor’s formula
in (7) we obtain

0 = (v, f(v, ǫb)) + (ǫb, g(v, ǫb))

= (v, f(v, 0)) + ǫ [(v,Dwf(v, 0) · b) + (b, g(v, 0))] + O(ǫ2).

To get (6) we divide by ǫ and let ǫ → 0.

2.1 Derivation of the t-model

In this section we will derive and analyze approximations for systems which
conserve energy and which can be written as (1)–(2).

Let y = 0. Since the energy is conserved, w(t) = O(t). Expanding
f(v,w) around w = 0 we see that

d

dt
v(t) = f (v(t), 0) + Dwf (v(t), 0) · w(t) + O(t2) (8)
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with y = 0, equation (2) gives

w(t) =

∫ t

0
g (v(τ), w(τ)) dτ

=

∫ t

0
g (v(τ), 0) dτ +

∫ t

0
O(τ)dτ

=

∫ t

0
g (v(t), 0) dτ +

∫ t

0
O(t − τ)dτ + O(t2)

= tg (v(t), 0) + O(t2)

Inserting the expression for w in (8) and disregarding the O(t2) terms we
arrive at the t-model

d

dt
v(t) = f (v(t), 0) + tDwf (v(t), 0) · g (v(t), 0) . (9)

It is called the t-model because it contains the factor t, and because it can
be derived—for the cases we are interested in—as the zero variance limit of
the t-damping equations studied by Chorin, Hald and Kupferman [1].

2.2 Properties of the t-model and associated numerical meth-

ods

The energy for a solution of the t-model is not constant, but decreases.
Indeed, it follows from (4),(6),(9) that

d

dt

1

2
‖v‖2 = (v, f(v, 0)) + t (v,Dwf(v, 0) · g(v, 0))

= −t‖g(v, 0)‖2. (10)

Thus the last term in (9) acts as a (non-linear) viscosity term. Similar
results have been obtained for the t-damping method applied to Hamiltonian
systems, see [2].

To solve eq.(9) we look for numerical methods where the energy decreases
in each time step. Let F (v(t), t) denote the right-hand side of eq.(9) and
consider Runge-Kutta methods of the form

ki = F



vn + h
s

∑

j=1

aijkj , tn + hci





vn+1 = vn + h

s
∑

i=1

biki
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with tn = nh, n = 0, 1, . . .. Set Vi = vn + h
∑s

j=1 aijkj for i = 1, . . . , s.

Theorem Let biaij + bjaji − bibj = 0 for i, j = 1, . . . , s and assume that

s
∑

i=1

bi = 1 ,
s

∑

i=1

bici =
1

2
(11)

with bi, ci ≥ 0. There is a Ṽ in the convex hull of V1, . . . , vs such that

1

2
‖vn+1‖2 −

1

2
‖vn‖2 = −h

(

tn +
h

2

)

‖g(Ṽ , 0)‖2.

Remark A numerical method that satisfies the assumptions in the theorem
will be symplectic and at least second order. The simplest example is the
implicit midpoint rule. It has s = b1 = 1 and a11 = c1 = 1

2 . Methods of
higher order (4,5,6,8) can be found in [13] [p.207, p.209, p317].
Proof We begin by expanding ‖vn+1‖2. After adding and subtracting
h

∑

j aijkj we get

(vn+1, vn+1) = (vn, vn) + h
∑

i

bi(ki, v
n + h

∑

j

aijkj)

+ h
∑

j

bj(v
n + h

∑

i

ajiki, kj)

− h2
∑

ij

[biaij + bjaji − bibj](ki, kj).

The last sum vanishes. Using the definitions of vi and ki yields

‖vn+1‖2 − ‖vn‖2 = h
∑

i

bi (F (Vi, tn + hci), Vi)

+ h
∑

j

bj (Vj , F (Vj , tn + hcj)) .

Now Vi are real, so the two sums are equal. Consequently

‖vn+1‖2 − ‖vn‖2 = 2h
∑

j

bj (Vj , f(Vj, 0) + (tn + jcj)Dwf(Vj, 0) · g(Vj , 0))

= −2h
∑

j

bj(tn + hcj)‖g(Vj , 0)‖
2

where we have used (4),(6). Let

G0 = min ‖g(Vj , 0)‖
2 = ‖g(Vj0 , 0)‖

2
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G1 = max ‖g(Vj , 0)‖
2 = ‖g(Vj1 , 0)‖

2.

Using (11) we conclude that

−2h

(

tn +
h

2

)

G1 ≤ ‖vn+1‖2 − ‖vn‖2 ≤ −2h

(

tn +
h

2

)

G0.

Set Ṽ = θVj + (1 − θ)Vj. Since g (V, 0) is continuous there is a Θ ∈ [0, 1]
such that

‖vn+1‖2 − ‖vn‖2 = −2h

(

tn +
h

2

)

‖g(Ṽ , 0)‖2.

This completes the proof.

3 The t-model for the Euler equations

The Euler equations describe the flow of an incompressible, inviscid fluid
in two or three dimensions. Here we look at flows in a cube with periodic
boundary conditions and consider two kinds of approximations. First we use
the Fourier method to obtain approximate solutions of Euler’s equations.
This leads to a large system of ordinary differential equations. Secondly we
use the t-model to reduce the number of variables. The questions are: Does
this method converge and what are the numerical results?

The Euler equations for 3 dimensional flows are

∂tu + (u · ∇)u = −∇p (12)

∇ · u = 0 (13)

where u = u(x, t) is the velocity, p is the pressure and t is time. We look
for 2π periodic solutions and use the notation u · ∇ =

∑

j uj∂j where u =

(u1, u2, u3)T , T means transpose and ∂ju = ∂u/∂xj for j = 1, 2, 3. By taking
the divergence of (12) and using (13) we see that

−∆p = ∇ · (u · ∇)u

where ∆ =
∑

j ∂2
j . Set

∫

p = 0. We can then solve for p and conclude from
(12) that

∂tu = −
[

(u · ∇)u + ∇ · (−∆)−1∇ · (u · ∇)u
]

. (14)

Next we expand u in a Fourier series

u(x, t) =
∑

k

uk(t)e
ikx. (15)
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It follows from (13) that k · uk ≡ 0 for k 6= 0. By combining (12) and (15)
and proceeding formally we get for k 6= 0

d

dt
uk = −i

∑

p+q=k

k · upAkuq (16)

where Ak = I − kkT /|k|2. (For more details, see e.g. [14]). Since u is real,
u−k = ūk. Finally we assume that u0 ≡ 0. As

∫

u is constant in time this
amounts to a restriction of the initial data.

We get the Fourier method by setting uk ≡ 0 for |k|∞ > m and for
all time and setting k · uk = 0 and u−k = ūk for t = 0. In this way (16)
becomes a closed system of ordinary differential equations that conserves
energy and yields solutions that are incompresible. To express (16) in the
form (1)–(2) we set vk = uk if |k|∞ ≤ n, and wk = uk if n < |k|∞ ≤ m. Let
F = {|k|∞ ≤ n} and G = {n < |k|∞ ≤ m}. If k ∈ F then

dvk

dt
= −i

[

∑

p+q=k

p∈F, q∈F

k · vpAkvq +
∑

p+q=k

p∈F, q∈G

k · vpAkwq

∑

p+q=k

p∈G, q∈F

k · wpAkvq +
∑

p+q=k

p∈G, q∈G

k · wpAkwq

]

.

The equation for dwk/dt is the same, except that k ∈ G. Following the
derivation of (9) we obtain the t-model for Euler’s equations

d

dt
vk = −i

[

∑

p+q=k

p∈F, q∈F

k · vpAkvq +
∑

p+q=k

p∈F, q∈G

k · vpAk(−i)t
∑

r+s=q

r∈F, s∈F

q · vrAqvs (17)

+
∑

p+q=k

p∈G, q∈F

k · (−i)t
∑

r+s=p

r∈F, s∈F

p · vrApvsAkvq

]

If k · vk = 0 and v−k = v̄k at t = 0, it holds for all time. Moreover, a direct
calculation shows that the energy decays, i.e.

d

dt

1

2

∑

k∈F

|vk|
2 = −t

∑

k∈G

|
∑

p+q=k

p∈F, q∈F

k · vpAkvq|
2. (18)

This is the complex analogue of (10). Finally we compare the solution u(x, t)
of Euler’s equations with the solutions generated by the t-model. Let T

d be
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the torus of length 2π in R
d with d = 2, 3 and set

v(x, t) =
∑

k∈F

vk(t)e
ik·x.

Theorem Assume that u(t) ∈ Hs(Td) for s ≥ 3, d = 2, 3 and 0 ≤ t ≤ T .
Then

‖u(t) − v(t)‖L2(Td) ≤
const(T )

ns−1
· max
0≤t≤T

‖u‖Hs(Td).

Proof Will be presented elsewhere.
Thus if the solution of Euler’s equations is smooth for t ≤ T then the

energy is constant, and the energy of the t-model should converge to the
energy of Euler’s equations. In our numerical experiments this holds for
d = 2 and fails for d = 3. This suggests that the solutions of the Euler
equation lose smoothness when d = 3, and may develop singularities.

4 Numerical results

In this section we present numerical results of the application of the t-model
to the 1D inviscid Burgers equation and the 2D and 3D Euler equations.
The equations of motion for the Fourier modes were solved by a Runge-
Kutta-Fehlberg method ([13]) with the tolerance set to 10−10. Note that
due to the quadratic nonlinearity and the form of the t-model term (see Eq.
17), the right hand side of the equation for each Fourier mode in the t-model
contains interactions with Fourier modes of at most double the wavevector.
So, the ratio of the number of unresolved modes in G to the resolved modes
in F is 1.

The different terms appearing in the right hand side of the equations
for the reduced model can be computed in real space using the Fast Fourier
Transform (FFT). Since for a reduced model of size N in each spatial direc-
tion we include N unresolved modes in each direction, the arrays involved
in the FFTs should be of size 2N . The fact that the t-model term can
be computed using the FFT makes the numerical implementation of the
t-model computationally efficient. Moreover, the FFT calculations involved
are dealiased by construction and thus no extra (e.g. 3/2 rule) dealiasing
is needed. For a calculation involving N modes in each direction, i.e. N/2
positive and N/2 negative, we perform FFTs of size 2N , i.e. N positive and
N negative modes. But we are interested only on the right hand side of
the equations for the first N/2 modes. This means (see [14]) that to avoid
aliasing (in the t-model term) we need for the total number of modes M used
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(a) (b)

Figure 1: (a) Energy evolution of the t-model with N = 32 modes for the
inviscid Burgers equation. (b) Evolution of the energy decay rate.

to satisfy the following inequality: −N − N/2 ≥ N/2 − 1 − M which yields
M ≥ 2N. But 2N is exactly how many modes we use in the FFTs, and thus
the t-model term calculation through FFTs is dealiased by construction.

In order to study the asymptotic decay rate of the energy in the resolved
modes, one has to evolve the system for long times. We evolved each case
up to time t=100, so that we have enough points to perform an accurate
estimate of the decay rate exponent. The need to perform calculations for
long times, prevented us from conducting numerical experiments of larger
size (within reasonable time) for the 3D Euler equations on a single processor
workstation. However, the fact that the t-model term can be computed
using the FFT means that the implementation of the model in any existing
parallel spectral Navier-Stokes code is straightforward and we expect to
report results of such simulations in the near future.

Figures 1, 2 and 3 present results of the application of the t-model to
the 1D inviscid Burgers equation, the 2D Euler equations and the 3D Euler
equations respectively. We present results for the evolution with time of the
energy in the resolved modes and for the rate of energy decay (see Eq. 18).
The numerical experiments are for resolved sets F (and the corresponding
sets G) of size N = 32, N = 322, and N = 323 for the 1D, 2D and 3D cases
respectively.

For the 1D inviscid Burgers equation ut + uux = 0, the initial condition
is u0(x) = sin x, which gives rise to a single shock wave at time T = 1. Until
the moment of the formation of the shock wave the energy E is practically
constant and soon after the well known t−2 energy decay law [15] is estab-
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(a) (b)

Figure 2: (a) Energy evolution of the t-model with N = 322 modes for the
2D Euler equations (note the extremely slow decay reflected in the very
small slope of the linear fit). (b) Evolution of the energy decay rate. Again,
note the very small values of the energy decay rate.

lished. The energy decay rate shown in Figure 1(b) reaches its peak around
time τ = 1.219 after which it starts decreasing. The t−2 energy decay regime
is established soon after. The estimated exponent of the energy decay is es-
timated as −1.9781±0.0001, using about 15000 points. It is interesting that
the right energy decay law is captured with only N = 32 Fourier modes.

For the 2D Euler equations the situation is drastically different. We
present results for an incompressible, isotropic random initial condition with
energy spectrum E(k) = exp(−2k) for the resolved modes and zero for the
unresolved modes. After 100 units of time, the energy has decayed by 0.2%.
In other words, the smooth initial condition does not lose its smoothness. In
fact, as one can see in Figure 2(a), after the insignificant energy decay, the
energy establishes a plateau which signifies the absence of drain of energy
out of the resolved range of modes. A linear fit (in log-log coordinates) of
the energy evolution gives a slope of −0.0008±0.0001, where we used about
15000 points.

The qualitative difference between the 2D and 3D case is striking. For
the 3D Euler equations we use as initial condition the Taylor-Green vortex
given by

u1(x, 0) = sin(x1) cos(x2) cos(x3),

u2(x, 0) = − cos(x1) sin(x2) cos(x3),

u3(x, 0) = 0

Note that the Taylor-Green initial condition is smooth having nonzero values

10



(a) (b)

Figure 3: (a) Energy evolution of the t-model with N = 323 modes for the
3D Euler equations. (b) Evolution of the energy decay rate.

only for the Fourier modes with ki = ±1, i = 1, 2, 3. A lot of numerical work
(see e.g. [16] and references therein) has been devoted to the investigation
of whether the solutions of the 3D Euler equations with the Taylor-Green
initial condition blow up in finite time. All calculations show a rapid increase
in the value of the maximum vorticity, but are hampered by the fact that
they run out of resolution around time T = 5. Note that the first peak of
the energy decay rate that we find is around time τ = 5.17.

More interestingly, the decay of the energy appears to be organized in
a collection of spikes of diminishing strength. This organization of the en-
ergy decay is reminiscent of the phenomenon of intermittency, i.e. bursts
of activity followed by intervals of relative inaction on the part of the flow.
Of course, the phenomenon of intermittency is not only of temporal nature,
but has a spatial manifestation too. This is exhibited as concentration of
the highest vorticity in small regions of the flow. The trend we observe in
the decay of the energy seems to assign a specific purpose to the vortic-
ity. Starting from a smooth initial condition, we have a steepening of the
gradients in the field. This means that smaller scales are excited until the
vorticity producing mechanism runs out of steam. Then we enter a period
of relative inaction, until there is a restart of the mechanism of steepening.
Energy is transferred again to the smaller scales and so forth. This scenario
continues until there is no energy left in the large scales. After that, the flow
just disintegrates and eventually comes to a halt. The purpose of vorticity
mentioned above is to regulate the transfer of energy to the small scales [17].
This is reminiscent of the picture suggested by Moffatt, Kida and Okhitani
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[18] of the vortex structures acting as the ”sinews of turbulence” .
The slope of the linear fit (in log-log coordinates) for the energy decay

is −1.8329 ± 0.0008, where we have used about 15000 points. Estimates
on the energy decay law for the 3D Euler equations are rare (see [19] and
references therein). Moreover, all the estimates concern the infinite space
case while we use periodic boundary conditions. For the infinite space case,
under the assumption of complete self-preservation, i.e. self-similarity for
all scales from 0 to ∞, one finds that the energy shoud decay as t−1 [19]. If
the assumption of complete self-preservation is not satisfied, the energy is
expected to decay as t−α where α > 1. Note that the assumption of complete
self-preservation is violated for the case of periodic boundary conditions and
so the exponent of the energy decay should be larger than 1. However, it
is not clear how the assumptions can be modified for this case. In 1D,
the change of boundary conditions from infinite to periodic changed the
exponent of energy decay from 1 to 2 [15]. It is not clear that this is also
the case for 3D. If it is, then the numerical estimate -1.8329 for α becomes
more plausible.

5 Conclusions

The problem of constructing reduced models for the Euler equations has
been, and still is, a great challenge for scientific computing. The t-model
proposed here should be considered a first step in deriving models directly
from the equations without ad hoc approximations. It is based on numeri-
cal and physical observations about the behavior of the solution (more so-
phisticated reduced models for the Euler equations were constructed and
simulated in [20]). Following [5], we tested the model on the 1D inviscid
Burgers equation for an initial condition that gives rise to a shockwave. The
model captures the right time of formation of the shock and the right rate
of decay of the energy of the solution. For the 2D Euler equations, the
model preserves the energy as it should since the solution remains smooth
for all times. The numerical results for the Taylor-Green vortex for the 3D
Euler equations produce rates of decay compatible with current thinking,
and suggest that the solution loses its smoothness in finite time.

The terms appearing in the reduced model can be efficiently implemented
by the use of the FFT on appropriate arrays. This makes the incorporation
of the model in existing pseudospectral algorithms rather straightforward.
We plan to apply the model in a parallel setting which will allow a better
assessment of the properties of the flow field that is predicted by the model.
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